Statystyka społeczna 24-SODL-STS
1. Pojęcie statystyki i jej funkcje (statystyka, metoda statystyczna, zbiorowość statystyczna). Rola statystyki w procesie badawczym, podstawowe zasady postępowania analitycznego. Pojęcie zmiennej i jej rodzaje (ilościowe – jakościowe, ciągłe – skokowe, zależne – niezależne, dychotomiczne – zdychotomizowane).
2. Poziom pomiaru: rodzaje skal. Skala nominalna, porządkowa, interwałowa, ilorazowa. Przykłady skal. Rozkłady liczebności i ich prezentacja graficzna;
3. Miary tendencji centralnej: średnia arytmetyczna, mediana, dominanta, kwantyle (kwartale, decyle, precentyle).
4. Miary dyspersji: rozstęp, odchylenie międzykwartylowe, odchylenia przeciętne, odchylenie standardowe, wariancja, odchylenie względne (współczynniki zmienności). Miary asymetrii: współczynniki asymetrii. Rozkład symetryczny i asymetryczny.
5. Rozkład zmiennych losowych (zero-jedynkowe, skokowe, ciągłe). Rozkład normalny, chi-kwadrat, t-Studenta. Standaryzacja rozkładu normalnego. Powierzchnia pod krzywą normalną – wykorzystanie prawa trzech sigm i tablic rozkładu normalnego.
6. Metoda reprezentacyjna. Przedziały ufności. Pojęcie populacji generalnej i próbnej. Schematy doboru próby do badań. Schematy losowego doboru próby Obliczanie minimalnej wielkości próby.
7. Wnioskowanie statystyczne. Testy parametryczne i nieparametryczne. Zasady doboru testu do badań. Hipoteza zerowa i alternatywna – ćwiczenia w ich formułowaniu. Określenie poziomu istotności. Błąd pierwszego i drugiego rodzaju. Rozkład statystyki testu. Tworzenie obszaru odrzuceń dla hipotezy zerowej (jednostronnej i dwustronnej). Podejmowanie decyzji statystycznej.
8. Testowanie hipotez – test chi-kwadrat. Miary zależności oparte na statystyce chi-kwadrat: współczynnik kontyngencji C Pearsona, Phi. Własności i interpretacja poszczególnych współczynników.
9. Współzależność – korelacja dla zmiennych interwałowych i ilorazowych (korelacja liniowa, diagram korelacyjny), regresja (regresja prostoliniowa). Współczynnik korelacji Pearsona (r). Własności i interpretacja poszczególnych współczynników.
10. Korelacja rangowa, miary korelacji rangowej: współczynnik Spearmana, Kendalla, zbieżności Goodmana-Kruskala.
Cele kształcenia
Kierunek studiów
Liczba godzin przedmiotu
Metody prowadzenia zajęć umożliwiające osiągnięcie założonych EK
Nakład pracy studenta (punkty ECTS)
Poziom przedmiotu
Rodzaj przedmiotu
Rok studiów (jeśli obowiązuje)
Koordynatorzy przedmiotu
W cyklu 2021/SZ: | W cyklu 2019/SZ: | W cyklu 2022/SZ: | W cyklu 2023/SZ: | W cyklu 2020/SZ: |
Cele kształcenia przedmiotu cyklu
Efekty kształcenia
Student po zakończeniu kursu:
zna podstawowe pojęcia statystyczne;
posiada wiedzę z zakresu funkcjonowania i właściwości miar statystyki opisowej;
posiada wiedzę z zakresu wnioskowania statystycznego – rozkładów zmiennych losowych i pobierania próby;
zna zasady testowania hipotez i właściwości miar współzależności;
rozumie i wyjaśnia różnicę między poziomami pomiaru w statystyce;
rozumie zasady funkcjonowania i zastosowania miar statystycznych;
potrafi zaplanować i przeprowadzić analizę statystyczną.
Kryteria oceniania
Wykład - egzamin pisemny
Literatura
• Szwed R., Metody statystyczne w naukach społecznych. Elementy teorii i zadania, Wyd. KUL, Lublin 2008;
• Nawojczyk M., Przewodnik po statystyce dla socjologów, SPSS Polska, Kraków 2002;
• Sobczyk M., Statystyka, PWN, Warszawa 2002 i późniejsze wznowienia.
• Kobus P., Pietrzykowski R., Zieliński W., Statystyka z pakietem STATISTICA; Wydawnictwo "Rozwój SGGW", Warszawa 2001;
• Zieliński T., Jak pokochać statystykę czyli STATISTICA do poduszki, Wydawnictwo StatSoftPolska, Kraków 1999;
• Aczel A.D., Statystyka w zarządzaniu, Wydawnictwo Naukowe PWN, Warszawa 2000
• bazy danych ze stron www.stat.gov.pl; https://www.europeansocialsurvey.org/
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: