Genetic algorithms and their applications 04-GA
The course presents the basic ideas underlying the genetic algorithms and exploits them in solving a number of practical optimization problems encountered in physical and applied sciences.
Week 1 Why genetic algorithms and their inspiration from biology
Week 2 Components of genetic algorithms
Week 3 An example of genetic algorithm
Week 4 Historical test functions and performance measures
Week 5 Exemplary applications in science and technology
Week 6 Schema theory and processing
Week 7 Encoding in genetic algorithms
Week 8 Advanced genetic operators
Week 9 Convergence problem and fitness scaling
Week 10 Locating alternative solutions using niches and species
Week 11 Ground state configurations of a finite number of classical charged particles
Week 12 The knapsack problem
Week 13 Evolution strategies, parameter control and constraint handling
Week 14 Travelling Salesman Problem
Week 15 Optimization of resource allocations and their flow
Koordynatorzy przedmiotu
Kryteria oceniania
Class participation and a written examination
Literatura
An Introduction to Genetic Algorithms for Scientists and Engineers, David A. Coley, World Scientific, Singapore, New Jersey, London, Hong Kong, 2005
A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, Springer, Berlin, Heidelberg, New York, 2007
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: